Gualtieri C., Smith Z. M., Cruz A., Parry C., and Vonhoff, F. J. (2022) Can the Foods We Eat Help Treat Alzheimer’s Disease? Frontiers Young Minds, 10(778999). DOI:10.3389/frym.2022.778999

Remy, N.Q., Guevarra, J.A., Vonhoff, F.J. (2022). Food supplementation with wheat gluten leads to climbing performance decline in Drosophila melanogaster. microPublication Biology. DOI:10.17912/micropub.biology.000642

Oyeyinka, A., Kansal, M., O’Sullivan, S. M., Gualtieri, C., Smith, Z. M., Vonhoff, F. J. (2022). Corazonin neurons contribute to dimorphic ethanol sedation sensitivity in Drosophila melanogaster. Frontiers in Neural Circuits, 16. DOI:10.3389/fncir.2022.702901

Khan, Z., Tondravi, M., Oliver, R., Vonhoff, F.J. (2021) Drosophila Corazonin Neurons as a Hub for Regulating Growth, Stress Responses, Ethanol-Related Behaviors, Copulation Persistence and Sexually Dimorphic Reward Pathways. Journal of Developmental Biology, 9(3): 26. DOI: 10.3390/jdb9030026

Jalali, D., Guevarra, J. A., Martinez, L., Hung, L., & Vonhoff, F. J. (2021). Nutraceutical and Probiotic Approaches to Examine Molecular Interactions of the Amyloid Precursor Protein APP in Drosophila Models of Alzheimer’s Disease. International Journal of Molecular Sciences, 22(13), 7022. DOI: 10.3390/ijms22137022

Vonhoff, F., & Keshishian, H. (2017). In Vivo Calcium Signaling during Synaptic Refinement at the Drosophila Neuromuscular Junction. Journal of Neuroscience, 37(22), 5511–5526. DOI: 10.1523/JNEUROSCI.2922-16.2017

Vonhoff, F., & Keshishian, H. (2017). Activity-Dependent Synaptic Refinement: New Insights from Drosophila. Frontiers in Systems Neuroscience, 11, 23. DOI: 10.3389/fnsys.2017.00023

Ryglewski, S., Vonhoff, F., Scheckel, K., & Duch, C. (2017). Intra-neuronal Competition for Synaptic Partners Conserves the Amount of Dendritic Building Material. Cell Press, 93(3), 632–645.e6. DOI: 10.1016/j.neuron.2016.12.043

Vonhoff, F., & Keshishian, H. (2017). Cyclic nucleotide signaling is required during synaptic refinement at the Drosophila neuromuscular junction. Developmental Neurobiology, 77(1), 39–60.  DOI: 10.1002/dneu.22407

Williams, A. A., Mehler, V. J., Mueller, C., Vonhoff, F., White, R., & Duch, C. (2016). Apoptotic Activity of MeCP2 Is Enhanced by C-Terminal Truncating Mutations. PLoS ONE, 11(7), e0159632. DOI: 10.1371/journal.pone.0159632

Mishra-Gorur, K., Çağlayan, A. O., Schaffer, A. E., Chabu, C., Henegariu, O., Vonhoff, F., … Günel, M. (2014). Mutations in KATNB1 cause complex cerebral malformations by disrupting asymmetrically dividing neural progenitors. Cell Press, 84(6), 1226–1239. DOI: 10.1016/j.neuron.2014.12.014

Ryglewski, S., Kadas, D., Hutchinson, K., Schuetzler, N., Vonhoff, F., & Duch, C. (2014). Dendrites are dispensable for basic motoneuron function but essential for fine tuning of behavior. Proceedings of the National Academy of Sciences, 111(50), 18049–18054. DOI: 10.1073/pnas.1416247111

Hutchinson, K. M., Vonhoff, F., & Duch, C. (2014). Dscam1 is required for normal dendrite growth and branching but not for dendritic spacing in Drosophila motoneurons. Journal of Neuroscience, 34(5), 1924–1931. DOI: 10.1523/jneurosci.3448-13.2014

Vonhoff, F., Kuehn, C., Blumenstock, S., Sanyal, S., & Duch, C. (2013). Temporal coherency between receptor expression, neural activity and AP-1-dependent transcription regulates Drosophila motoneuron dendrite development. Development, 140(3), 606–616. DOI: 10.1242/dev.089235

Vonhoff, F., Williams, A., Ryglewski, S., & Duch, C. (2012). Drosophila as a model for MECP2 gain of function in neurons. PLoS ONE, 7(2), e31835. DOI: 10.1371/journal.pone.0031835

Vonhoff, F., & Duch, C. (2010). Tiling among stereotyped dendritic branches in an identified Drosophila motoneuron. Journal of Comparative Neurology, 518(12), 2169–2185. DOI: 10.1002/cne.22380

Duch, C., Vonhoff, F., & Ryglewski, S. (2008). Dendrite elongation and dendritic branching are affected separately by different forms of intrinsic motoneuron excitability. Journal of Neurophysiology, 100(5), 2525–2536. DOI: 10.1152/jn.90758.2008